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ABSTRACT

Modeled dissipation rate transport equations are often derived by invoking various hy-

potheses to close correlations in the corresponding exact equations. D. C. Leslie suggested

that these models might be derived instead from Kraichnan's wavenumber space integrals

for inertial range transport power. This suggestion is applied to the destruction terms in

the dissipation rate equations for incompressible turbulence, buoyant turbulence, rotating

incompressible turbulence, and rotating buoyant turbulence. Model constants like C"2 are

expressed as integrals; convergence of these integrals implies the absence of Reynolds num-

ber dependence in the corresponding destruction term. The dependence of C"2 on rotation

rate emerges naturally; sensitization of the modeled dissipation rate equation to rotation

is not required. A buoyancy related e�ect which is absent in the exact transport equation

for temperature variance dissipation, but which sometimes improves computational pre-

dictions, also arises naturally. Both the presence of this e�ect and the appropriate time

scale in the modeled transport equation depend on whether Bolgiano or Kolmogorov in-

ertial range scaling applies. A simple application of these methods leads to a preliminary

dissipation rate equation for rotating buoyant turbulence.
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I. Introduction

Despite widespread agreement in the turbulence modeling community about the basic

structure of the dissipation rate transport equation, questions remain about its theoretical

grounding. The central problem remains to justify the absence of O(Re
1=2
T ) terms in this

equation, the possible existence of which is suggested by elementary arguments.1 More

basic di�culties arise when there are coupled 
uctuating �elds as in buoyant turbulence,

or imposed time scales as in rotating turbulence. In these cases, even the form of the

appropriate transport equation is doubtful. Thus, it has been suggested2 that the transport

equation for dissipation of temperature variance "� should contain a term related to the

buoyant production of turbulence energy, although this requirement does not follow from

the exact transport equation for "�. Similarly, although rotation is well known to have

e�ects which must be re
ected in the dissipation rate transport equation, such e�ects do

not occur explicitly in the exact equation for ". These e�ects are therefore sometimes

introduced by sensitizing3 the transport equation to rotation in various ways.

Attempts to derive the " transport equation from analytical theories have been only

partially successful. In a preliminary discussion of two equation modeling based on the

direct interaction approximation4 (DIA), Leslie5 observed that whereas the transport equa-

tion for turbulence kinetic energy followed in principle by integrating the DIA correlation

equation over all wavevectors, the analogous treatment of the response equation, which

should lead to a transport equation for a time scale, does not suggest itself as readily.

Leslie asserted that dimensional analysis alone �xes the functional form of the " equation,

but this statement neglects the possibility of ReT dependence. A subsequent analytical

investigation of the dissipation rate transport equation by Yoshizawa6 led to O(Re
1=2
T )

terms and to dependence on the energy spectrum in the dissipation range. A later analysis

by Yakhot and Orszag7 was criticized by Smith and Reynolds8 and then reformulated by

Smith and Yakhot.9 This work identi�ed the absence of O(Re
1=2
T ) terms with a cancellation

of divergences in the renormalization group formulation of the dissipation rate equation.

This point of view must be contrasted with the usual one in the modeling literature, namely

that O(Re
1=2
T ) terms are absent because certain production and dissipation terms in the

exact transport equation for dissipation rate cancel. The failure of this cancellation, un-

balanced vortex stretching, has been analyzed by Speziale and Bernard,10 and of course
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leads to explicit ReT dependent terms.

These investigations of the " transport equation follow the usual approach in tur-

bulence modeling of closing correlations in the exact equation for _" =< �r _u � ru >.

A di�erent approach is taken by Hamba,11 namely that a transport equation for eddy

viscosity is obtained by Yoshizawa's two-scale direct interaction approximation12;13 and

the transport equation for " is then inferred from this equation and a K equation. The

present analysis is based instead on Leslie's suggestion5 that the " transport equation be

derived from Kraichnan's integrals14 for inertial range transport power. Leslie's original

discussion was general enough to include e�ects of production and turbulent di�usion; the

present analysis is restricted to issues accessible to a homogeneous theory. Applied to

incompressible turbulence, this procedure leads to an integral for C"2; the convergence of

this integral at high wavenumbers is equivalent to the absence of ReT dependence of the

destruction term. A modeled dissipation rate equation for rotating turbulence is derived

by substituting rotation-dependent �eld descriptors in Kraichnan's integrals. To illustrate

the general method, the phenomenological theory of rotating turbulence of Zhou15 is ap-

plied. The dependence of C"2 on rotation emerges naturally, and even provides a result

very similar to models proposed by Speziale.16 Buoyant turbulence is investigated by writ-

ing the analogous integral for "�. The analysis leads naturally to the buoyancy dependent

term suggested in Ref. 2. Straighforward application of the arguments of Ref. 15 to

buoyant turbulence leads to a preliminary dissipation rate equation for rotating buoyant

turbulence. The present approach to the dissipation rate equation, like that of Hamba and

Yoshizawa, o�ers an alternative to the standard derivations. Application of this approach

to production and di�usion terms will be reported later.

II. The dissipation rate equation in incompressible turbulence

It is generally accepted that inertial range spectral transport power must be balanced

by viscous dissipation; accordingly, equating dissipation to the inertial range transfer in-

tegral of Kraichnan,14

" =
i

2
[I�(k0) � I+(k0)]Pimn(k) < um(p)un(q)ui(�k) > (1)

where
Pimn(k) = kmPin(k) + knPim(k)

Pij(k) = �ij � kikj=k
2
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and the integration operators are de�ned by

I+(k0) =

Z 2k0

k0

dk

Z
p;q�k0 ; k=p+q

dp dq

I�(k0) =

Z k0

0

dk

Z
p;q�k0 ; k=p+q

dp dq

Time arguments in the Fourier amplitudes ui are understood. Di�erentiate Eq. (1) with

respect to time, substitute the equations of motion for the _u terms, and apply the quasi-

normal hypothesis to obtain

_" =
i

2
[I�(k0) � I+(k0)]Pimn(k)

�
< _um(p)un(q)ui(�k) > + < um(p) _un(q)ui(�k) >

+ < um(p)un(q) _ui(�k) >
	

=
1

4
[I�(k0) � I+(k0)]

�
2Pimn(k)Pmrs(p)Qns(q)Qir (k)

� Pimn(k)Pirs(k)Qns(q)Qmr(p)
	

(2)

In turbulence with an isotropic inertial range, the correlation tensor takes the form

Qij (k) = Q(k)Pij (k) (3)

where the correlation function Q is related to the energy spectrum by

4�k2Q(k) = E(k) (4)

The integrals in Eq. (2) will be evaluated by substituting the Kolmogorov spectrum

E(k) = CK"
2=3k�5=3 (5)

The absence of ReT dependence will follow from the convergence of these integrals at high

wavenumbers: if the integrals diverged at either high or low wavenumbers, it would be

necessary to substitute instead a truncated Kolmogorov spectrum such as

E(k) =

�
CK"

2=3k�5=3 if k0 � k � kd
0 if k � k0 or k � kd

(6)

and investigate the dependence on the cuto�s k0 and kd. Dependence on kd, due to

divergence at high wavenumbers, would imply Reynolds number dependence through the
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relation ReT = (kd=k0)
4=3. The convergence of the integrals Eq. (2) would prove the

locality of _", namely that _" is a property of the inertial range alone.

Substitute the isotropic forms Eqs. (3)-(5) in Eq. (2). The convergence of each term

will be investigated separately.

There are two I� terms:

I�1 = I�Pimn(k)Pmrs(p)Pns(q)Pir(k)Q(q)Q(k) (7)

I�2 = I�Pimn(k)Pirs(k)Pns(q)Pmr(p)Q(p)Q(q) (8)

If p!1 with k �xed, the triangle condition k = p+q implies that q! p. First consider

the integral I�1 de�ned in Eq. (7). Substitute the leading order result q = p; I�1 vanishes

to this order because it is of odd order in p. Expand the q dependent terms to next order

in k=p. Then I�1 is of the order

I�1 �

Z k0

0

E(k) dk

Z
1

k0

dp E(p)kp(k=p) =

Z k0

0

dk k2E(k)

Z
1

k0

dp E(p)

� (k0)4=3(k0)�2=3 = (k0)2=3 (9)

For the term I�2 of Eq. (8), the scaling is found directly to be

I�2 �

Z k0

0

k4 dk

Z
1

k0

dp p2p�22=3 � (k0)5(k0)�13=3 � (k0)2=3 (10)

To investigate the convergence of the I+ terms, note �rst that since the wavevectors

are all bounded from above in these integrals, there is no question of high wavenumber

divergence, so consider their convergence at low wavenumbers. It will be convenient to

rewrite the I+ terms symmetrically as

I+ = I+Pimn(k)
�
Pmrs(p)Pns(q)Pir(k)Q(q)Q(k) + Pmrs(q)Pns(p)Pir(k)Q(p)Q(k)

� Pirs(k)Pns(q)Pmr(p)Q(q)Q(p)
	

(11)

It su�ces to check convergence in the limit q ! 0. The triangle condition implies that

also p! k. Substitute the lowest order result p = k in �rst and third terms in Eq. (11)

to obtain the integrand

Pimn(k)Pns(q)
�
Pmrs(k)Pir(k) � Pirs(k)Pmr(k)

	
� 0
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Thus, this potential divergence of the p integration cancels. The term of �rst order in q

vanishes after spherical integration. The second order term will lead to the scaling

Z 2k0

k0

dk E(k)

Z k0

0

dq E(q)k(q2=k) �

Z 2k0

k0

E(k) dk

Z k0

0

dq q2E(q) � (k0)2=3

Note that the second term in Eq. (11) also scales this way: the leading order term vanishes

because it is of odd order and the term of next order scales as above. We conclude that

I+ � (k0)2=3 (12)

Adding Eqs. (9), (10), and (12),

_" � �I+ + I�1 + I�2 � "4=3(k0)2=3 (13)

So far, the scale k0 is arbitrary and _" has been evaluated assuming an in�nite Kol-

mogorov inertial range. To apply these results to single point turbulence modeling, it is

appropriate to replace the in�nite Kolmogorov range by a spectrum with a �nite Kol-

mogorov range exending over scales k0 < k < kd. The convergence of the integrals under

consideration implies that they are weak functions of the actual energy spectrum in the

low and high wavenumber regions k < k0 and k > kd. Accordingly, we will make the

analytically simplest choice, that the spectrum vanishes outside this range, as in Eq. (6).

To �x the scale k0, we reason that in single point turbulence modeling, " is the power

input into the inertial range, so that _" should be evaluated at k0 = k0, corresponding to

the largest inertial range scale. If a model of this type were to be applied in a large eddy

simulation, k0 would be equated instead to the inverse �lter size. In the context of single

point modeling, the choice k0 = k0 is also consistent with the choice of K=" as a time

scale, since "=K � "1=3k
2=3
0 is the Komogorov inertial range frequency evaluated at k0.

The turbulence kinetic energy K is given in the in�nite Reynolds number limit k0 ! 0 by

K =

Z
1

k0

dk E(k) =
3

2
CK"

2=3k
�2=3
0 (14)

Substituting Eqs. (3), (4), and (6) in Eq. (2) and setting k0 = k0, the cuto�s cause

all terms to vanish except for the last term in I�, so that

_" = �
1

4

Z k0

0

dk Pimn(k)Pirs(k)

Z
k=p+q;p;q�k0

dp dq Pmr(p)Pns(q)Q(p)Q(q) (15)
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Eq. (13) with k0 = k0 and Eqs. (14)-(15) then imply that

_" = �C"2
"2

K
(16)

Although the constant C"2 could be evaluated from Eq. (15), our concern here is only to

derive the forms of the relevant models. Note that the demonstration that the integrals

converge is necessary to prove the proportionality of _" to "2=K because dimensional analysis

alone cannot rule out dependence on ReT .

III. The dissipation rate equation in rotating turbulence

Imposed time scale e�ects like rotation can be included in this analysis provided that

time scale dependent �eld descriptors are known. Thus, a rotation dependent equation for

_" will follow by substituting rotation dependent expressions for the correlation Qij in Eq.

(2). Appropriate expressions appear in the recent work of Mahalov and Zhou.17 This pro-

cedure could help address theoretical questions concerning anisotropy of spectral transfer

in rotating turbulence. In order to evaluate the overall e�ect of rotation on the dissipation

rate equation, we will apply Zhou's simpli�ed isotropic theory of rotating turbulence15

based on a phenomenological prescription for the rotation dependent decorrelation time.

Naturally, geometric e�ects like two-dimensionalization are not accessible to such a theory;

a more complete theory would begin with anisotropic expressions and then evaluate shell

averages.

The theory of Ref. 15 predicts that for large rotation rates 
, the energy spectrum is

given by

E(p;
) = C

K(" j 
 j)1=2p�2 (17)

where the modi�ed Kolmogorov constant could be computed from the 
ux integral for the

k�2 energy spectrum and k0 time scale postulated15 for the strong rotation limit. For

general rotation rates,

E(p;
) = Z(p;
)E(p) (18)

where E(p) is the rotation independent Kolmogorov spectrum and the rotation dependent

correction Z is given in Ref. 15. Substituting Eqs. (18), (3), and (4) in Eq. (2) leads to an

expression for _" which cannot be evaluated analytically; the resulting integral could only
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be given in tabular form as a function of 
. Since the rotation dependent spectrum of Eq.

(18) is only approximate, it is reasonable to simplify the theory further.

We will follow a procedure which has now become widespread,18 namely to evaluate

_" in the strong rotation limit, and then bridge the strong and weak rotation limits by an

ad hoc interpolation. Substituting the strong rotation spectrum of Eq. (17) in Eq. (2),

_" = �
1

4
(C


K)
2" j 
 j

Z k0

0

dk Pimn(k)Pirs(k)Z
k=p+q;p;q�k0

dp dq Pmr(p)Pns(q)(pq)
�2 (19)

The integral in Eq. (19) can be shown to be convergent and independent of k0; therefore

_" = �C

"2 j 
 j " (20)

in the strong rotation limit.

A consequence of this model is the complete suppression of decay of turbulence in

the strong rotation limit: the solution of Eq. (20) with the energy equation _K = �" and

initial conditions K = K0; " = "0 when t = 0 is

K=K0 = 1 +
"0

C
K0

[e�C
t � 1]

"="0 = e�C
t

where C = C

"2. The long time limit " = 0 indicates the complete suppression of energy

transfer in this model.

A simple formula which interpolates between the strong rotation limit de�ned by Eq.

(20) and the case of no rotation de�ned by Eq. (16) is the Bardina19 correction

_" = �C"2
"2

K

�
1 +

C

"2

C"2

j 
 j K

"

	

But unless helicity is explicitly included in the theory, the corrections for small 
 must

be independent of the sign of 
 and hence quadratic to lowest order. A simple expression

with this additional property is

_" = �C"2
"2

K

�
1 +

�C

"2

C"2


K

"

�2	1=2
(21)
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Speziale16 has recently obtained a model with the same form as Eq. (21) by an entirely

di�erent argument beginning from stress transport models. Simulations20 of rotating de-

caying turbulence using Eq. (21) suggest that fully satisfactory comparison with DNS data

may require low Reynolds number corrections of the model.16

IV. The dissipation rate equation in buoyant turbulence

In buoyant turbulence, the additional spectral 
ux "� appears; the analog of Eq. (1)

is

"� = ifI� � I+gkm < T (p)um(q)T (�k) > (22)

where T denotes the temperature. The correlations in buoyant turbulence are de�ned by

QT (k) =< T (k)T (�k) >

Qh
r (k) =< T (k)ur(�k) >

Qu
ij(k) =< ui(k)uj (�k) > (23)

Di�erentiating Eq. (22) with respect to time, following the procedure of Sect. II,

_"� = ifI� � I+gkm
�
< _T (p)um(q)T (�k) > + < T (p) _um(q)T (�k) >

+ < T (p)um(q) _T (�k) >
	

= fI� � I+g
�
T 1(k;p;q) � gT 2(k;p;q)

�
(24)

where the direct interaction approximation gives

T 1 =
1

4
fkmpnQ

T (k)Qu
mn(q) + kmpnQ

h
m(q)Q

h
n(k)

+ kmPmrs(q)Q
h
r (k)Q

h
s (p)

� kmknQ
h
m(p)Q

h
n(q) � kmknQ

T (p)Qu
mn(q)g (25)

and

T 2 =
1

4
kmPm3(q)

�
pr�(p;k;q)

�
Qh
r (k)Q

T (q) +QT (k)Qh
r (q)

�
+ qr�(q;k;p)

�
Qh
r (k)Q

T (p) +QT (k)Qh
r (p)

�
� kr�(k;p;q)

�
QT (p)Qh

r (q) +QT (q)Qh
r (p)

�	
(26)
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and gravity acts in the 3 direction. The constant g denotes the product of the acceleration

of gravity and the thermal expansion coe�cient of the 
uid. The T 2 terms originate from

the _u term in Eq. (24); the quantity � in Eq. (26) is a wavenumber-dependent time scale.

Recent theoretical arguments21;22 suggest that buoyant turbulence can exhibit Bol-

giano scaling23 in which the spectra corresponding to QT ; Qh; Qu are

Eu = C�
Kg

4=5"
2=5
� k�11=5

Eh = C�
hg

1=5"
3=5
� k�9=5

ET = C�
Tg
�2=5"

4=5
� k�7=5 (27)

In this scaling, the time scale � has the form

�(k;p;q) =
�
�(k) + a�(p) + �(q)

��1
(28)

where

�(k) = C�
Dg

2=5"
1=5
� k2=5 (29)

and a is the inverse turbulent Prandtl number for free convection. A preliminary attempt

to compute the inertial range constants a,C�
K ,C

�
h,C

�
T , and C

�
D appears in Ref. 24. Bolgiano

scaling should describe buoyant 
ows, or at least scales of motion, in which the gravitational

coupling dominates nonlinearity, although the occurence of this scaling in Rayleigh-Benard

convection remains controversial.25 If instead, the gravitational coupling is small compared

to the nonlinearity, then the temperature is a passive scalar with a source of 
uctuations;

Kolmogorov scaling applies, in which

Eu = CK"
2=3k�5=3

Eh = 0

ET = CB"�"
�1=3k�5=3 (30)

Kolmogorov scaling applies to locally isotropic turbulence; accordingly, the heat transfer

spectrum Eh vanishes in Eq. (30). Bolgiano scaling applies to anisotropic turbulence in

which the direction of gravity is distinguished; this permits a nonvanishing Eh in Eq. (27).

The dissipation rate equation for each type of scaling will be treated separately.
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A. Bolgiano scaling

In evaluating the integral Eq. (24) with Eqs. (25)-(27), the isotropic contribution to

the energy transfer will be evaluated by setting

QT (k) = QT (k)

Qh
r (k) = Qh(k)Pr3(k)

Qu
ij(k) = Qu(k)Pij (k)

When these substitutions are made, the index 3 always appears in pairs. Thus, to evaluate

the isotropic part of the energy transfer, it is convenient to sum over this index. This

procedure leads, as in Sects. II and III, to an integral for _"�; the proof that this integral

converges is similar to the proof in Sect. II and therefore need not be given. The terms

T 1 scale after integration as

fI� � I+gT 1 � g2=5"
6=5
� (k0)2=5 (31)

Integrating ET from Eq. (27) over a Bolgiano spectrum with lower cuto� k0 leads to

K� =
5

2
C�
Tg
�2=5"

4=5
� k

�2=5
0 (32)

thus, in terms of single point quantities, setting k0 = k0

fI� � I+gT 1 = �
1

4

Z k0

0

dk kmkn

Z
k=p+q;p;q�k0

dp dq�

f
1

3
Qh
mp(p)Q

h
np(q) +QT (p)Qu

mn(q)g (33)

or in view of Eqs. (31)-(32),

fI+ � I�gT 1 = �C�
"2

"�

K�
"� (34)

Analogous treatment of the T 2 terms gives

fI� � I+gT 2 � g�3=5"
6=5
� k

2=5
0 (35)

Integrating the Bolgiano spectra Eh and Eu of Eq. (27),

H =
5

4
C�
hg

1=5"
3=5
� k

�4=5
0

K =
5

6
C�
Kg

4=5"
2=5
� k

�6=5
0 (36)
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where the heat transfer H is the single point moment H = � < u3T >. Substituting Eq.

(36) in Eq. (35),

fI� � I+gT 2 = C�
"5

"�

K
H (37)

Combining the results of Eqs. (34) and (37),

_"� = �C�
"2

"�

K�
"� � C�

"5g
"�

K
< u3T > (38)

which agrees with the model proposed in Ref. 2 from which the nomenclature for the

model constants is taken.

B. Kolmogorov scaling

Substituting the Kolmogorov spectra Eq. (30) in Eqs. (24)-(26) leads to

fI� � I+gT 1 � �"�"
�1=3"2=3k

2=3
0

The term T 2 vanishes since Qh = 0; therefore,

_"� = �C�
"4

"

K
"� (39)

Comparison of Eqs. (38) and (39) reveals that Bolgiano and Kolmogorov scaling

have fundamentally di�erent implications for modeling buoyant turbulence. First, the g

dependent term of Eq. (38) is absent in Eq. (39). More fundamentally, the time scale in

Eq. (38) is the thermal time scale K�="� whereas the time scale in Eq. (39) is the velocity

time scale K=". The results for di�erent scaling laws are combined in the model of Ref. 2,

in which the destruction terms are

_"� = �C�
"2

"�

K�
"� � C�

"4

"

K
"� � C�

"5g
"�

K
< u3T > (40)

A model of this form is not inconsistent with the present theory, since Bolgiano and Kol-

mogorov scaling can both occur in the same problem at di�erent inertial range scales.21;22

However, particular problems can be dominated by only one type of scaling: computational

experience indicates26 that the g dependent term in Eq. (40) improves computational

predictions for some problems but degrades them in others; this di�erence may re
ect

dominance in these problems by di�erent scaling laws. Future work must clarify how the

existence of these two scaling laws should be re
ected in turbulence models.
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V. Rotating buoyant turbulence

A modeled transport equation for "� in rotating buoyant turbulence follows from

Eqs. (24)-(26) by substituting rotation-dependent �eld quantities QT , Qh
i and Qu

ij ; the

calculation does not di�er in principle from that of Sect. III for rotating incompressible

turbulence. As in Sects. III and IV, the present analysis will be limited to a simpli�ed

isotropic analysis which treats only the overall e�ect of this type of coupling; the subtle

geometric e�ects which can arise if the rotation axis does not coincide with the direction of

gravity are inaccessible to this type of theory. The discussion will be limited to Bolgiano

scaling.

The approximate analysis of Bolgiano scaling in Ref. 24 expresses Eh and Eu in terms

of ET by

Eh � g�ET Eu � (g�)2ET (41)

where � is a time scale. A rotation dependent spectrum ET can be found from the DIA


ux balance for Bolgiano scaling. For the purpose of computing scalings, this balance takes

the form

"� � g2k4�ETEu (42)

Following Zhou15, assume that � �j 
 j�1 in the limit of strong rotation. Substituting Eu

from Eq. (41) in Eq. (42),

ET = C
�
T g�1 j 
 j3=2 "

1=2
� k�2 (43)

Then Eq. (41) implies

Eh = C
�
h j 
 j1=2 "

1=2
� k�2

Eu = C
�
K g j 
 j�1=2 "

1=2
� k�2 (44)

It is crucial that the DIA 
ux integral, given in simpli�ed form as Eq. (42), converges when

the spectra of Eqs. (43)-(44) are substituted in it. The convergence of the 
ux integral is

easily checked; only because of this convergence can the scaling law of Eq. (43) be inferred

from Eq. (42).

Substitution of Eqs. (42) and (44) in Eq. (24) leads as in Sect. III to the strong

rotation limit

_"� = �C
�
"2 j 
 j "� (45)

12



An ad hoc bridge between the weak and strong rotation limits can be constructed as in

Sect. III. A possible form is

_"� = �C�
"2

"�

K�
"�
�
1 +

�C�

"2

C�
"2


K�

"�

�2	1=2

� C�
"5g

"�

K
< u3T >

�
1 +

�C�

"2

C�
"5


K

g"�H

�2	1=2

VI. Conclusions

We summarize the models obtained for the destruction terms in dissipation rate trans-

port equations:

A. Incompressible turbulence

_" = �C"2
"2

K

where C"2 can be computed from Eq. (15). Convergence of this integral at high wavenum-

bers implies that C"2 does not depend on turbulent Reynolds number ReT .

B. Rotating turbulence

For rapid rotation,

_" = �C

"2 j 
 j "

where C

"2 is found from Eq. (19). A possible interpolation formula between the weak and

strong rotation limits is

_" = �C"2
"2

K

�
1 +

�C

"2

C"2


K

"

�2	1=2

C. Buoyant turbulence

For Bolgiano scaling,

_"� = �C�
"2

"�

K�
"� � C�

"5g
"�

K
< u3T >

For Kolmogorov scaling

_"� = �C�
"4

"

K
"�

The time scale for Bolgiano scaling is "�=K�; the time scale for Kolmogorov scaling is "=K.

The buoyancy e�ect present for Bolgiano scaling is absent for Kolmogorov scaling.
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Bolgiano and Kolmogorov scaling are believed to occur together in general 
ows; this

suggests that the general dissipation rate model could combine the results for both scalings

as in Eq. (40).2 However, a complete model must provide for 
ows dominated by either

scaling law alone.

D. Rotating buoyant turbulence

In the strong rotation limit, for Bolgiano scaling

_"� = �C�

"2 j 
 j "�

As in the case of rotating incompressible turbulence, an ad hoc expression interpolating

the weak and strong rotation limits can be constucted.
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